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CHAPTER 1 MOTION OF ARROWS UNDER ACTION OF GRAVITY
AND AIR RESISTANCE

1.1 INTRODUCTION

In this analysis, the motion of bodies with tail fins under the action of gravity
and air resistance is considered. The action of gravity is represented by a force of
magnitude W (kg) acting vertically downward, where W is the arrow weight. The air
resistance is taken as a force opposite to the direction of motion and proportional to
the square of the arrow velocity. Hence, the expression for air resistance may be
written as kv2 , where v (m/s) is the arrow velocity and k (kg-s2 /m2 ) is a drag
constant.

The components of the forces and the accelerations are taken in the direction
of the tangent and of the normal to the trajectory. Angle is taken arbitrarily to be the
angle between the tangent to the trajectory and the x - axis (see Fig 1a). The

component of the acceleration in the tangential direction is dv
dt

and in the normal

direction is v2

R
where R is the radius of curvature of the trajectory. Note that
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d
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Now the equations of motion are obtained by equating the product of the mass
and the acceleration to the force in both the tangential and normal directions.

1.2 ARROW ASCENT FROM ORIGIN TO APEX

From Fig 1 the following equations of motion may be written

m
dv
dt

mg kv sin 2 (1)

mv
d
dt

mg


 cos

The second equation may be re-written as

d
dt

g
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
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Note that arrow mass m = W/g
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equation 1 may be re-written as
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 cos sin  2

or,
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v
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Taking the horizontal component of the velocity vx = v cosas the unknown
variable, then equation 3 may be re-written as
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Note that anglevary from αat the origin, to elsewhere. Now integrating equation 5
gives
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At origin = and vx = vi cos , where vi is the initial velocity. Therefore,
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or, in parametric form

vx = vi cosf() (8)
vy = vi cosf() tan

At apex = 0 and vx = v0 hence,
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From equation 2, it follows that
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Then substituting vx of equation 8 in equation 10 and integrating, we get
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For constant k the problem of ascent is completely solved by equations 11, 12
and 13. Numerical evaluation of the above integrals is carried out by a computer
program by the author.



1.3 ARROW DESCENT FROM APEX TO TARGET

The following two equations of motion may be written

m dv
dt

mg kv sin 2 (14)

mv d
dt

mg  cos

The term kv 2 has a minus sign because it acts in a direction opposite to mg sin.

From the second equation of equation 14, it follows

d
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Taking the horizontal component of the velocity vx = v cosas the unknown
variable, then equation 16 may be re-written as
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Now integrating equation 18 gives
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At apex = 0 and vx = v0, hence,
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Since vy = vx tan, then,

vx = v0 f() (21)
vy = v0 f() tan

From equation 15 it follows that
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Then substituting vx in equation 20, and integrating equation 22, we get
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For constant k the problem of descent is completely solved by equations 23,
24 and 25. These integrals are numerically evaluated Simpson’s rule is implemented
in a computer program by the author for numerical evaluation of the integrals.



CHAPTER 2 EQUATIONS OF MOTION OF BODIES UNDER THE
ACTION OF GRAVITY AND AIR RESISTANCE

2.1 INTRODUCTION

In this analysis, projectiles are assumed to be bodies moving under constant
gravitational force and air resistance proportional to the square of their velocity. The
velocity at any time t may be decomposed into vertical and horizontal components,
and air resistance for each component is dealt with independently.

2.2 BODIES FALLING UNDER THE ACTION OF GRAVITY AND AIR
RESISTANCE

A body of weight W falls under gravity against a resistance proportional to the
square of its velocity. Its velocity v and displacement y at time t are determined as
follows (1)

Let the resistance be kv2 when the velocity is v. Then, if y is measured
positive downwards,

W
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Whence
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Writing v = dy/dt and integrating,
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The constant of integration being zero if y = 0 at t = 0.

A shorter method is to use the integral form
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The constant of integration being zero since v = 0 at t = 0. Hence
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Finding v in term of y can be achieved by either eliminating t from the

expressions for v and y above, or by writing
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dx
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and integrate with respect to y. Each method leads to the equation
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2.3 UPWARDS SHOOTING OF BODIES

A body of weight W is shot upwards under gravity at a velocity u and air
resistance kv2 where k is a constant. The velocity v is then given by (1)
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At apex v = 0, hence the maximum height Ymax reached by the body is
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A more detailed shorter method is to use the integral form as follows
Let air resistance be ky v2 when the velocity is v. Note that air resistance and

the weight W are both positive acting downwards,
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At apex v = 0 and t = tmax
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Integrating
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2.4 MOTION OF BODIES UNDER THE ACTION OF AIR RESISTANCE
AND ABSENCE OF GRAVITY

A body of weight W moves horizontally at a velocity vx and moves against a
resistance proportional to the square of its velocity. Its velocity vx and displacement X
at time t are determined as follows (1)

Let the resistance be kxvx
2 when the velocity is vx. The equation of motion is
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Note that if the body is a projectile, t is the sum of the times of ascent and
descent, and X is its horizontal range.

Let the ordinate of the target be ±y (+ if y is measured below the origin) then
the height of fall Yf is

Yf= Ymax ± y
(34)

The time of fall tf is obtained from equation (8) as
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Therefore, the total flight time t in equation (29) is
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2.5 DRAG CONSTANTS k AND kx

Drag constants are defined as follows

k
g

A Cy y dy (38)

k
g

A Cx x dx (39)

Where, is the unit weight of air at ambient conditions that may be determined from
the following thermodynamic relation (2)

 P
RT

(40)

Since =1.293 kg/m3 at an atmospheric pressure of 760 mm Hg and at an absolute
thermodynamic temperature of 273° Kelvin(2) ,the gas constant R can then be
determined as
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
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
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

1

1293 2733. *
(41)

P is the atmospheric pressure measured in atmospheres, T is the absolute
thermodynamic ambient temperature in ° Kelvin. Ax and Ay are the projectile
maximum cross-sectional areas projected on planes perpendicular to the x - and to the
y - axes respectively. Cdx and Cdy are the dimensionless coefficients of drag in the
directions of x - and y - axes respectively. Cdx and Cdy depend on the shape of the
projectile and are normally given by the manufacturer, or may be determined by tests.



CHAPTER 3 HORIZONTAL ANGLE CORRECTIONS

3.1 HORIZONTAL ANGLE CORRECTION DUE TO EARTH’S ROTATION

Distances on great circle may be determined by using the following formula (3)

          D LATs LATd LATs LATd LNGd LNGs  cos sin sin cos cos cos *1 60
........... (42)

Where

D is the distance in nautical miles.
(Note that a nautical mile is the length of the arc of 1 minute of the meridian = 6080
ft = 1.85318 kilometres at the equator) (4)

LATs and LNGs are the latitude and longitude of the source in degrees and fraction
thereof.

LATd and LNGd are the latitude and longitude of the destination in degrees and
fraction thereof.

Hence, the meridian length at the equator = 1.85318*60*360 = 40,028.688 kilometres
Since the Earth completes a revolution in 24 hours, the speed of a point at the equator
is = 40028688/(24*3600) = 463.295 m/s. The speed of rotation Vp of any other point
P on the globe, defined by its latitude and longitude is

Vp = (1-ABS(LATp)/90)*463.295 (43)

Whence, the horizontal angle correction Ac due to Earth’s rotation of a projectile
flying a time t is calculated as follows
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Where is the angle between the x - y plane and the great circle passing through the
source. Therefore,
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Note that if Ac > 0 then the angle correction Ac must be set to the East of the target
hitting point. It shall be set to the West of the target hitting point if Ac < 0.



3.2 HORIZONTAL ANGLE CORRECTION DUE TO WIND ACTION

Let the wind velocity be Wv, its incidence be Wi and the time of flight be t.
Head wind is defined in this context to have zero incidence. The sign of incidence is
positive if measured anti clock wise from the x - axis, and negative if measured clock
wise. The horizontal angle correction Hc, is determined from the following formula
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The influence of wind Wd, on the range is

Wd = -Wvcos(Wi)t (47)



CHAPTER 4 COMPUTER PROGRAM

4.1 INTRODUCTION

A computer program has been developed to solve the projectile equations of
motion. Constant gravity and air resistance proportional to the square of the projectile
velocity are considered in the solution. The objective was to predict vertical and
horizontal shooting angles for accurate artillery aiming at moving and stationary
targets.

To satisfy the objectives of the program, efficient iterative routines that
reduced computing time to a fraction of a second and the computing errors to less
than10 10 were developed.

The program language is HTBasic (5), compatible with Hewlett-Packard (6)

BASIC 6.2. The program can run on either Hewlett-Packard workstations or on any
IBM PC or 100% compatible. The program is made of a short main program and of
two large subprograms. The subprograms can be compiled in machine code and stored
in two numeric arrays, thus increasing the performance speed by many folds and
providing adequate degree of security.

Two categories of shooting ranges are considered, a short range where
horizontal angle corrections due to Earth’s rotation are ignored, and long range where
such corrections are considered.

4.2 SHORT RANGE

4.2.1 Data input

Two data input forms are displayed on the screen in secession. A flickering
cursor takes its proper position in the forms’ columns demanding the input of the
indicated data. After entering the data into the computer memory, the computer
checks the input, rejects all illogical inputs and displays appropriate messages thereat.
If the input data is logical it will be printed in colours in its respective column and the
cursor moves automatically to the next column. After the completion of filling the
data input form, the computer gives the user the following options

To make corrections.
To print the data input forms.
To continue otherwise.

The entered data comprise information about the target status, the atmospheric
conditions and the projectile specifications.

4.2.2 Target status

Information about the target status comprises the following data

a) Horizontal distance of the target hitting point from the shooting source.
b) Relative level of the target hitting point with respect to the shooting source.
c) Velocity and incidence of the moving targets.



4.2.3 Atmospheric conditions

Information about atmospheric conditions comprises the following data

a) Velocity and incidence of wind.
b) Average trajectory temperature and pressure.

4.2.4 Projectile specifications

Projectile specifications comprise the following data

a) Muzzle velocity.
b) Dimensionless drag coefficients in the vertical and horizontal directions.

4.3 LONG RANGE

4.3.1 Data input

Two additional data input forms containing the latitudes, longitudes and
altitudes above sea level of the source and target hitting point, are added to the data
input forms described in Section 2 above. Data is entered into the computer memory
in identical manner as described in Section 2. The range and relative level of the target
hitting point are not entered from the key board. They are determined by the program
from the latitudes, longitudes and altitudes of the source and the target hitting point,
and printed in their respective columns automatically.

The units of measurement of latitudes and longitudes are degrees, minutes and
seconds. The units of measurement of the altitudes are meters.

4.4 PROGRAM OUTPUT

4.4.1 Fig 1

The performance of the selected gun under the specified conditions is plotted
in this figure. The maximum range and the vertical angle thereof and the specified
ranges are superimposed thereon. The vertical dotted line representing the specified
range may cut the gun’s performance curve in one point or in two points, thus defining
the vertical shooting angles. If it does not cut the performance curve, then the selected
projectile is deemed inadequate to reach the target hitting point. Continuing program
execution under such circumstances, causes the program to halt, and a message to
appear on the screen advising the gun’s maximum range under the specified
conditions and that the projectile cannot reach its target.

The user has the options of dumping the graphics of this figure to the
connected printer or continues program execution to Table 1.



4.4.2 Table 1 (low angle)

If there are low and high vertical shooting angles, the aiming summary
relevant to the low shooting angle appear in this Table.

Options of printing this Table and or continuing program execution to Fig 2
(low angle) are available to the user.

4.4.3 Fig 2 (low angle)

Fig 2 plots the trajectory using anisotropic scale. To verify a suspected
obstacle in the trajectory, enter its abscissa and ordinate from the keyboard. A vertical
solid line representing the obstacle will then be plotted to exact size and location. If
the obstacle interferes with the trajectory, or if the user wishes to investigate shooting
with the high vertical angle, then press [ENTER]. This moves program execution to
the display of Table 1(high angle). If however, there is one shooting angle, then only
Table 1 (high angle) will be displayed.

The user has the option of dumping the graphics of this figure to the connected
printer or continues to Table 1 (high angle).

4.4.4 Table 1 (high angle)

This Table presents the aiming summary relevant to the high vertical shooting
angle.

Options of printing this Table and or continuing program execution to Fig 2
(high angle) are available to the user.

4.4.5 Fig 2 (high angle)

Fig 2 (high angle) plots the trajectory using non-isotropic scale. Verification of
suspected obstacles is conducted in the same way as in Fig 2 (low angle). If the
obstacle line still interferes with the trajectory, or if the user is not satisfied, then press
[ENTER]. This causes the program to halt, and a message advising the user to use a
bigger gun to appear on the screen.

If letter y is entered and the target was previously defined a moving target,
then Fig 3 and Table 2 will be displayed in graphics. Note that for stationary targets
Fig 3 and Table 2 will not be displayed.

The user has the options of dumping Fig 3 and Table 2 to the connected
printer, and or ending the session

4.4.6 Fig 3 and Table 2

A graphical representation of shooting moving target is plotted to scale in Fig
3. A summary of shooting moving target is listed in graphics in Table 2.
Fig 3 and Table 2 are presented on the same page.

Options of dumping the content of the screen to the connected printer and or
ending the session are available to the user.



CHAPTER 5 EXAMPLES

All data displayed in the Data Input Forms 1 to 4, are rounded for convenience
to three decimals. However, for maximum accuracy no rounding of data takes place in
the program computations.

5.1 SHORT RANGE

Target status Atmospheric conditions Projectile specifications
___________ ___________________ ___________________
Abscissa 3000 m Wind velocity 20 m/s Area projection
Ordinate 100 m Wind incidence -12º in y - z plane 0.1 m2

Velocity 300 m/s Trajectory temperature 0º in x - z plane 0.2 m2

Incidence 45º Trajectory pressure 1 Atm Drag coefficient
in x - axis direction 0.05
in y - axis direction 0.08

Projectile weight 20 kg
Muzzle velocity 1000 m/s

A suspected mountain summit located at 2400 m from the gun’s muzzle and
102 m above the gun’s muzzle is suspected to be an obstacle in the trajectory.

This moving target is considered suitable for short range aiming. The above
listed information was entered in Data Input Forms 3 and 4.

As shown in Fig 1, the target may be shot in either low or high vertical angle.
Table 1 (low angle) gives the shooting output summary for a stationary target. Fig 2
represents the trajectory. The co-ordinates of the suspected obstacle were entered into
the computer memory. The program superimposed on Fig 2 (low angle) a vertical line
representing the suspected obstacle. In this particular case, the obstacle interferes with
the trajectory, hence the high vertical angle was selected as a solution.
Table 1 (high angle) and Fig 2 (high angle) are then printed. Fig 3 represents the
geometry of shooting the moving target and Table 2 gives the final shooting summary
of the moving target.

5.2 LONG RANGE

Source/Destination Atmospheric conditions Projectile specifications
________________ ___________________ ___________________
Source Wind velocity 20 m/s Area projection

Latitude 15º20’13.1” Wind incidence -12º in y - z plane 0.1 m2

Longitude 37º14’0” Trajectory temperature 0º in x - z plane 0.2 m2

Altitude 0 m Trajectory pressure 1 Atm Drag coefficient
Destination in x - axis direction .01

Latitude 15º0’0” in y - axis direction .02
Longitude 37º0’0” Projectile weight 100 kg
Altitude 0 m Muzzle velocity 1000

m/s



This target is assumed to be a suitable long range stationary target. Data Input
Forms 1, 2, 3 and 4 are then duly filled with the information above listed. No obstacle
is suspected to interfere with the trajectory.

It is established from Fig 1 that the target may be shot in either low or high
vertical angle. Since no obstacle is suspected, the low shooting angle was selected.
Table 1 gives the shooting output summary for a stationary target and Fig 2 represents
the projectile trajectory.
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