FINITE ELEMENT ANALYSIS IN DESIGN OF STEEL-CONCRETE-STEEL SANDWICH AND REINFORCED CONCRETE SECTIONS BY

Anis J Helou, BCE, M.Sc, Ph.D

February 2010

CHAPTER 3 COMPUTER SOFTWARE

3.1 INTRODUCTION

ANALYSIS software was developed to solve Structural and Civil Engineering designs by implementing the Finite Element Analysis formulations presented in this study. Many original solutions were incorporated in this work, and colossal efforts and many years of intensive research were spent in the development of this software.

3.2 SCOPE OF PROGRAM

A brief description of the most prominent capabilities of ANALYSIS software is given here below

- 1. Determination of the buoyancy of immersed sections.
- 2. Determination by the finite element analysis method of nodal internal forces and displacements of elastic structures that are idealized as an assemblage of discrete beam-column elements, supported by self-equilibrating external forces and pressures. The formulation incorporates deformations due to bending, shear and axial forces, the non-linear influence of axial forces on bending and equivalent nodal force vectors corresponding to trapezoidal loading, uniformly distributed loading and linear thermal gradients across elements. Elastic sub-grade foundation elements are incorporated in the analysis of foundation structures.
- 3. Plotting the nodal internal moment and shear diagrams.
- 4. Design of shear connectors for double skin composite (DSC) to resist compression plate buckling, interface shearing forces and to act as transverse shear reinforcement.
- 5 Determination of ultimate moment of resistance of DSC sections subject to bending and axial forces.
- 6. Design for shear reinforcement of RC beam-column elements.
- 7. Determination of ultimate moment resistance of reinforced concrete (RC) sections subject to bending and axial forces.
- 8. Display and or print literature, axes, input data forms, and sections' details.
- 9. Provide a drafting board for plotting of figures and cross-sections.

3.3 FORMULATION

The program has been originally developed as a general-purpose program to perform all the calculations implied by the finite element formulation. The analysis can be applied to any plane assemblage of discrete beam column elements. The program determines the internal forces (axial, bending and transverse shear) acting within the plane of the cross-section, which is idealized as an assemblage of discrete beam - column, finite elements (see Figure 5.2). The analysis incorporates deformations due to bending, axial and transverse shearing forces, the non-linear influence of axial forces on bending, equivalent nodal force vectors corresponding to trapezoidal and uniformly distributed load, and linear thermal gradients across elements ⁽⁵⁾. The program also incorporates elastic foundation elements to model the effect of inter-granular soil pressures beneath the foundations and designs RC and DSC elements. The design of RC elements is based on ACI Code. The design of DSC elements is based on Euro Code and on research in the School of Engineering, UWCC.

The program has been validated, by comparing the numerical results for a carefully chosen range of problems, with available analytical solutions.

- 3.4 OPTIONS OFFERED BY ANALYSIS SOFTWARE
- 1. The use of mouse or soft keys menu to control program execution during the entire performance in DOS environment
- 2. Graphical I/O capability is added to create dialogs and widgets for effective graphical user interfaces to control program execution during the entire performance in Windows environment.
- 3. Determination of nodal displacements, internal forces and moments
- 4. Designing double skin composite elements
- 5. Designing reinforced concrete elements
- 6. Checking the design of double skin composite elements against ACI Code

3.5 INPUT OF DATA

ANALYSIS Program displays on the screen at proper intervals all the input data forms that are then filled by the user with the required information. Corrections of the data input can be made at all times, and printing the input data forms is an available option. For demonstration, the data of the selected example is entered by DEMO program on behalf of the user.

3.6 PROGRAMMING LANGUAGE

The programming language of the present development is HP BASIC for Windows and HP BASIC PLUS. ANALYSIS program can run under DOS 5.0 or above and under Windows 95+ environments.

3.7 SYSTEM REQUIREMENTS

A 386/486/Pentium class processor or better is required. A processor with built-in numeric processor (486, Pentium) or an external numeric coprocessor (387SX, 387DX, 487) is strongly recommended. Eight megabytes of free RAM are recommended. If memory is inadequate, the program displays the free available memory and gives proper advice. The program will run with a monochrome, 16-colour, 256-colour or 24-bit display driver, but a 256-colour display driver is recommended. COLOR MAP functions only with 256-color display driver. The program can send screen dumps to any graphic printer supported by Windows. Plotters must be HPGL or PostScript compatible.

3.8 ENVIRONMENT

ANALYSIS runs in DOS and Windows as follows

- DOS version It runs in MS-DOS version 5.0 or above. Microsoft mouse software must be installed on your computer before running the program.
- 2) Windows version
 - a. Windows 3.1x Add Microsoft WIN32S to the system.
 - b. Windows 95+

3.9 THE DEMONSTRATION PROGRAM

To demonstrate the performance of ANALYSIS, a DEMO program that presents the various features and capabilities of the software has been developed. It solves the same example presented in Fig 5.1.

Although the intended use of the master program is for much more complicated problems, this example was carefully selected simple to allow checking the computer output by hand calculations. The DEMO diskette is easy to run and pleasant to watch.

3.10 RUNNING THE DEMO PROGRAM

Before running the Demo program, make sure that the computer complies with the limitations stated under SYSTEM REQUIREMENTS and ENVIRONMENT mentioned above. After that is done, insert the Demo diskette in drive A, keep it inserted during the entire performance of the program, and strictly heed the instructions displayed on the screen by the DEMO program. DEMO.ZIP has been uploaded unto Supremelogic Ltd website. Those wishing to download it may click on the following URL link. After extracting all its files, click on START_DEMO.BAT file to start the program execution. Thenceforth follow carefully the instructions as they are displayed on the screen.

If Windows version is used, invoke DEMO.EXE by the File Manager. The Demo program runs for 1 hour then quits and returns control to Windows.

If MS-DOS version is used, type A:\>demo then press [ENTER]. The Demo program runs for 1/2 hour then quits and returns control to DOS drive A.

To re-run either Demo program repeat the relevant steps explained above.

CHAPTER 4 EXAMPLES OF PROGRAM APPLICATION

4.1 INTRODUCTION

Two examples, a single bore DSC immersed tube tunnel and a continuous RC frame are chosen for the application of the program. Printing of the input data forms is provided by ANALYSIS software to assist the users entering the input data into the program memory.

4.2 DOUBLE SKIN COMPOSITE TUBE TUNNEL SECTION

4.2.1 Ultimate limit state bending and axial force

Determination of the ultimate bending resistance of a double skin composite section, is based on the following assumptions

- a) Strain in the concrete is assumed to be proportional to the distance from the neutral axis (Fig 4.1 c). The maximum strain in the extreme fibre, at ultimate load, is assumed to be equal to 0.003.
- b) Tensile strength of the concrete is neglected.
- c) At ultimate load, concrete stress is not proportional to strain, and a rectangular compressive concrete stress distribution may be assumed (Fig 4.1 b).
- d) The designed compressive axial force P_{U} , is assumed to act at the centroid of the transformed un-cracked section (Fig 4.1 b).
- e) Stress in the compression steel plate f_{SC} , is limited by the material yield stress f_Y , slip yielding of the compressive plate connectors and plate buckling. Hence for compression plate yielding ^(6,7)

$$f_{SC} \le f_Y \tag{4.1}$$

For slip yielding of the compressive plate connectors

$$f_{SC} \le \frac{n_C P_{RK}}{b t_C \gamma_V}$$
(4.2)

In which, n_C is the number of compression plate connectors effective in resisting the longitudinal shear force between the compression plate and concrete (number of studs between points of zero and maximum moment), P_{RK} is the characteristic shear resistance of the stud connectors and γ_V is a partial material safety factor, taken as 1.25.

For plate buckling

$$f_{SC} \le \frac{\pi^2 E_S t_C^2}{4.5 S_C^2}$$
(4.3)

Where, b, t_c , and E_s are the width, thickness and Young's modulus of compression plate and S_c is the longitudinal spacing of compression plate connectors

f) Stress in the tensile steel plate f_{St} , is limited by the material yield stress f_Y and slip yielding of the tension plate connectors. Hence for tension plate yielding

$$f_{St} \le f_Y \tag{4.4}$$

for slip yielding

$$f_{St} \le \frac{n_t P_{RK}}{bt_t \gamma_{Vt}}$$
(4.5)

In which, n_t is the number of tension plate connectors effective in resisting the tensile forces (number of studs between points of zero and maximum moment), and γ_{Vt} is a partial material safety factor based on actual tests ^(6.11), taken as 1.6 for concrete in tension zones. When f_{St} is compressive, equations (4.1), (4.2) and (4.3) should be applied instead of equations (4.4) and (4.5), for the determination of the allowable tension plate stress.

The ultimate design resistance of a double skin composite section, subjected to bending and axial force, may now be determined as follows:

Considering the equilibrium of axial forces (see Fig 4.1 b) gives

$$P_U = F_{SC} + F_C + F_{St} \tag{4.6}$$

Taking moments about the line of action of F_{St} gives

$$M_{\rm U} + P_{\rm U} e^{\prime} = F_{\rm SC} Z^{\prime} + F_{\rm C} Z$$
 (4.7)

In equations (4.6) and (4.7)

$$F_{\rm SC} = \frac{f_{\rm SC} b t_{\rm C}}{\gamma_a} \tag{4.8}$$

$$F_{\rm C} = \frac{f_{\rm CK} bx}{\gamma_{\rm C}} \tag{4.9}$$

$$F_{\rm St} = \frac{f_{\rm St} b t_{\rm t}}{\gamma_a} \tag{4.10}$$

From the geometry of Fig 4.1 we may derive the following:

$$e' = \frac{1}{2} \frac{(d + t_t + t_c)^2 + (n - 1)[t_t^2 + t_c \{2(d + t_t) + t_c\}]}{d + n(t_t + t_c)} - \frac{t_t}{2}$$
(4.11)

$$Z = d + \frac{t_{t} - x}{2}$$
(4.12)

$$Z' = d + \frac{t_{t} + t_{c}}{2}$$
(4.13)

In which n is steel/concrete modular ratio γ_a and γ_c are the partial material safety factors of steel plate and of concrete. All other terms in equations (4.6) to (4.13) are defined in Fig 4.1

From the geometry of Fig 4.1 c, the tension plate strain ε_{st} and the compressive strain ε_{sc} are given by

$$\varepsilon_{st} = \frac{d + \frac{t}{2} - c}{c} \varepsilon_{c} \qquad (4.14)$$
$$\varepsilon_{sc} = \frac{c + \frac{t_{c}}{2}}{c} \varepsilon_{c} \qquad (4.15)$$

where ε_c is the strain in the extreme concrete fibre, taken equal to 0.003 at ultimate load. Hence,

$$f_{St} = \varepsilon_{st} E_S = \frac{d + \frac{t_t}{2} - c}{c} \varepsilon_c E_S$$
(4.16)

$$f_{SC} = \varepsilon_{sc} E_S = \frac{c + \frac{c_c}{2}}{2} \varepsilon_c E_S$$
(4.17)

in which f_{St} is the lowest value given by equations (4.4) to (4.17) and f_{SC} is the lowest value given by equations (4.1), (4.2) and (4.3).

Solving equations (4.6) to (4.17) can be best achieved by plotting interaction diagrams (Figures 5) by computers. The ultimate moment of resistance of the section, corresponding to a particular value of P_{U} , can then be read directly from the plotted interaction diagram. If desired, these equations can be also solved by hand as follows:

a) Assume a value of c = d/2 and take x = 0.90 c

b) Solve for f_{St} and f_{SC} (equations (4.16) and (4.17)). Note that f_{St} and f_{SC} are limited by equations (4.1) to (4.5).

c) Determine F_{SC} , F_C , and F_{St} and P_U . If P_U is equal, or close enough, to the external compressive force, determine M_U . Otherwise adjust c and repeat steps (a) to (c).

4.2.2 Diagonal tension in concrete

Consider an element of concrete (Figure 4.2 (a)), which is acted upon by transverse shear stress τ and axial compressive stress σ_x . Under combined action of τ and σ_x , the concrete is assumed to fail by diagonal tension, caused by tensile stress σ_t (Figure 4.2 (b)). The magnitude and direction of the tensile stress can be deduced from Mohr's circle. Stresses σ_x and τ produce a minor principal stress σ_t on a plane inclined at an angle β to the line of action of τ .

From the geometry of the Mohr's circle we may write the following

$$\sigma_{t} = \sqrt{\left(\frac{\sigma_{x}}{2}\right)^{2} + \tau^{2}} - \frac{\sigma_{x}}{2}$$
(4.18)

If τ is the shear stress causing diagonal tension failure, then σ_t is equal to the ultimate tensile strength of the concrete f_{Ct} . Hence the ultimate shear strength of the concrete is given by

$$\tau = \sqrt{\mathbf{f}_{\mathrm{Ct}}^{2} + \boldsymbol{\sigma}_{\mathrm{x}} \mathbf{f}_{\mathrm{Ct}}} \tag{4.19}$$

The value of σ_x should be determined approximately and conservatively from the equation

$$\sigma_{\rm x} = \frac{{\rm P}_{\rm U}}{{\rm A}_{\rm C}} \tag{4.20}$$

Where P_U is the axial compressive force and A_C is the area of the uncracked transformed composite section (Figure 4.3), given by

$$A_{C} = b\{n(t_{c} + t_{t}) + d\}$$
(4.21)

Fig 4.1 DSC element subjected to axial force and bending a) cross-section b) strain diagram c) stress block diagram

*

Fig. 4.2 Combined shear and axial compression a) shear and normal stresses b) Mohr's circle

Fig 4.3 Composite section representation a) typical section b) transformed uncracked section

4.2.3 Buoyancy

Figure 4.1 shows the assumed tunnel cross-section, with the exterior, interior and ballast surfaces defined by suitable elements and nodes. The origin of the global coordinates is taken at node 1 so that all nodal co-ordinates are positive. Information contained in Fig 4.1 was used to complete input data forms 1 to 3. Computer output is given in Fig 1 and in Table form.

4.2.4 Finite element representation

Figure 4.2 shows the finite element representation of the tunnel cross-section. Information contained in Figure 4.2, was used to fill input data forms 1 to 3. Computer output is given in Fig 1 and in Table forms

4.2.5 Loading

Figure 4.3 shows the assumed trapezoidal and concentrated loading and external and internal temperature loading acting on the cross-section. The information contained in Figure 4.3 and the material properties in Table 6 were used to complete the data input data forms 6 to 9. Since the section is supported by elastic foundations there are no assumed fixed boundary conditions, whence input data Table 10 was ignored.

4.2.6 Shear connection

The material properties, the specified steel plates' thickness and the concrete depth are filled in input data forms 11 and 12.

4.2.7 Computer output

After running the program the information of the section was entered into the computer memory, then Tables 4 to 14 were displayed on the screen and printed. Since no boundary nodes were considered, Table 10 did not appear. The deformed section is plotted in Fig 2. Note that elements 1, 2 and 3 are not shown, as deformed. This is due to the fact that in the finite elements analysis method, the element's internal forces, moments and displacements are represented by their equivalence at the element's nodes. Therefore, extrapolating displacements or internal forces at locations other than the element's nodes may not be correct. If it is desired to show displacements or internal forces at any other position, nodes should be created at those positions. Nevertheless, the program plots shear and moment diagrams for selected elements but displays a warning message on screen into this effect. Fig 4 plots stress and strain diagrams of DSC cross-section and Fig 5 plots interaction diagrams of ultimate moment resistance versus axial forces.

4.4 RUNNING THE PROGRAM

Printing the output Tables and dumping the Figures are available options during the first and subsequent runs of the program. Since most of the input and output data is recorded automatically in binary data files, printing Tables and dumping Figures may, at the discretion of the user, be postponed to a subsequent run.

4.4.1 Buoyancy

The data input in forms 1 to 3 was entered into the computer memory during the first run. The computer output is shown in Tables 1 to 3, which are also recorded as binary data files on the mass storage media.

4.4.2 Finite element analysis

The input data forms, 4 to 8 were entered into the computer memory during the first run. The computer output is shown in Tables 4 to 11 and Figures 2 and 3. Tables 4 to 10 are recorded as binary data files. Table 11 is computed each time the subroutine is executed.

4.4.3 Design of shear connection

The input data forms, 10 and 11 were entered into the computer memory during the first run. The computer output is shown in Tables 13 and 14. Table 13 is recorded as binary data file and Table 14 is computed each time the program is executed.

4.4.5 Design for ultimate moment and axial force

The data in form 12 and the internal bending moment and axial compressive force in output Table 11 (node 1 element 1) were entered into the computer memory. The computer output is shown in Fig 5. Since no binary data file is created, dumping of the graphics, if required, should be performed during each run. **Composite Section Buoyancy data input**

Fig 2.7 Global axes for the geometry of cross-sections and finite element representation

Fig 4.1 Global co-ordinates of tunnel cross-section

INPUT DATA FORM 1 - BUOYANCY

Surface elements

Divide the exterior, interior and ballast surfaces of the crosssection into suitable elements and nodes for buoyancy calculations

The entire cross-section should be placed in the first quadrant of the selected global cartesean axes, so that all nodal co-ordinates are positive. Refer to Section 3.2.1 for proper selection of axes.

Exterior boundary surface elements:

Lowest element number 1	
Highest element number 4	
Interior boundary surface elements:	
Lowest element number 5	
Highest element number 8	
Ballast boundary surface elements:	
Lowest element number	
Highest element number 12	
Total number of surface nodes in the cross-section 10	

INPUT DATA FORM 2 - BUOYANCY

Surface	Node	Global nodal co-or	dinates m
element number	number	Abscissa	Ordinate
1	1 2	0 0	0 8
2	2 3	0 12	8 8
3	3 4	12 12	8 0
4	4 1	12 0	0 0
5	8		1 1
6	5		1 7
7	6 7		7 7
8	7 8	11 11	7 1
9	9 10	1 11	2 2
10	10 8	11 11 11	2 1
11	8 5		1 1
12	5 9 		
	I 	 	

Surface elements nodes and global co-ordinates

INPUT DATA FORM 3 - BUOYANCY

Average steel plate thicknesses:	
Interior m	0.012
Exterior m	. 0.012
Unit weights of:	
Water kN/m^3	10
Concrete kN/m^3	24
Ballast kN/m^3	22

Composite Section Buoyancy computer output

Fig 1 Immersed cross-section

Buoyancy data and results per 1m strip _____

Unit weight of water	=10kN/m^3
Unit weight of steel	=76kN/m^3
Unit weight of concrete	=24kN/m^3
Unit weight of ballast	=22kN/m^3
Exterior steel plate thickness	=.012m
Interior steel plate thickness	=.012m
Total length of exterior boundary elements	=40m
Total length of interior boundary elements	=32m
Area inscribed within the exterior boundaries	=96m^2
Area inscribed within the interior boundaries	=60m^2
Cross-sectional area of ballast	=10m^2
Weight of steel plates	=65.664kN
Weight of structural concrete	=843.264kN
Weight of ballast	=220kN
Weight of cross-section without ballast	=908.928kN
Weight of cross-section with ballast	=1128.928kN
Water upthrust	=960kN
Factor of safety against floatation without ballas	t=.9468
Factor of safety against floatation with ballast	=1.176

Composite Section Finite element analysis data input

Fig 4.1 Global co-ordinates of tunnel cross-section

Fig 4.2 Finite elements representation

Fig 4.4 Loading diagram

INPUT DATA FORM 4 - FINITE ELEMENT ANALYSIS

Elements nodes and global co-ordinates Refer to Section 3.2.1 for proper selection of axes Total number of elements in the cross-section 9 Total number of nodes in the cross-section 6

Element	Node	Global nodal co-or	dinates m
number	number	Abscissa	Ordinate
1	1 2	0 0	0 7
2	2 3	0 11	7 7
3	3 4	11 11	7 0
4	4 5	11 7	0 0
5	5	7 4	0 0
6	6 1	4 0	0 0
7	4 5	11 7	0 0
8	5 6	7 4	0 0
9	6 1 	4 0	0 0 1

INPUT DATA FORM 5 - FINITE ELEMENT ANALYSIS

Elastic foundation elements

Elastic foundation elements must be consecutively numbered (see Section 3.3.2)

INPUT DATA FORM 6 - FINITE ELEMENT ANALYSIS

Element	Modulus	Poisson's	Second	Cross-	Unit
number 	of elasticity kN/m^2	ratio	moment of area m^4	sectional area m^2 	weight kN/m
1	2.E+7	.2	.08333	1 	27 27
2	1.E+7	.2	.08333	1	27
3	2.E+7	 .2 	08333	1	27
4	 2.E+7 	 .2 	 .08333 	1	45 45
5	 2.E+7 	 .2 	 .08333 	1	45
6	 2.E+7 	.2	 .08333 	 1 	45 45
	 	 		 -	
			 	 -]	
	1	I			

Structural elements material properties

Angle between global X'-axis and direction of gravity in \emptyset 90

INPUT DATA FORM 7 - FINITE ELEMENT ANALYSIS

Thermal loading

Refer to Figure 6.1 for the definition of T1 and T2 $\,$

Flomont	Construction	Design	Design	Coefficient	Depth
number	tomperature	temperature	temperature	of thermal	of
number		т2	T1	expansion	section
		aC	øC	/øC	m
1	15	30	10	1.E-5	1
T	10				(I
2	15	30	10	1.E-5	1
2				1	I
3	15	30	10	1.E-5	1
0			1	1	
			1	1	
		1	1	1	
		1	1	1	1
	1				
	1	1	1	1	Į į
	1	1	1		
					[]
		1			
			1		[
	1	1		1	
					1
	1			1	1
	1 T				
	1				1 1
	1	1	1	l I	i İ
					i i
		1	i	1	i i
	_				
			1	1	1 1
		i		1	1 1

INPUT DATA FORM 8 - FINITE ELEMENT ANALYSIS

Element | Node |Unit transverse| number | number |load kN/m -----|-----|------290 140 1 | 1 | 2 _____ | _____ | _____ 2 | 2 | 3 140 140 _____ _____| _____ | ____ 3 | 3 | 140 | 4 | 290 ----- | ------ | -------___| 4 | 4 | 290 | 5 | 290 -----_____ - - -5 | 5 | 290 | 6 | 290 ----|-____ _____ 6 | 6 | 290 | 1 | 290 _____| -----____| - 1 _____| ____ ___ ____|__ ____| ____ | __ | __ ___|_____|____ ____| 1 -1 _ __ __ __ __ __ __ __

Trapezoidal/uniformly distributed loading

INPUT DATA FORM 9 - FINITE ELEMENT ANALYSIS

Nodal loading

Total number of the loaded nodes 2

Node number	Force in X' direction	Force in Y' direction	Bending moment
	kN	kN	kN-m
5 6	0 0 	100 100	0 0
	[

INPUT DATA FORM 10 - FINITE ELEMENT ANALYSIS

	Global nodal	displacements	
Node number	in X' direction	in Y' direction	Rotation
	- 		
	-		
		 ·	
		-	
		-	
		 -	
0 0 0 0 0 0 0 0 0 0 0 0	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 > o o o o o o o o o o o o o o o o o o o	

Boundary conditions (0=fixed 1=free)

*

INPUT DATA FORM 11 - DESIGN FOR SHEAR CONNECTION

Total number of composite elements 6
Concrete cylinder characteristic strength kN/mm^2 30
Concrete modulus of elasticity kN/mm^2 20,000
Concrete secant modulus of elasticity kN/mm^2 32,000
Steel plate yield strength kN/mm^2 275
Steel plate modulus of elasticity kN/mm^2210,000
Diameter of stud connectors mm 12
Stud ultimate tensile strength kN/mm^2 400

INPUT DATA FORM 12 - DESIGN OF SHEAR CONNECTION

Element	Concrete	Steel plate thi	cknesses mm
number	depth	Tensile	Compressive
	mm		
1	1000	12	12
2	1000	12	12
3	1000	12	12
4	1000	12	12
5	1000	12	12
6	1000	12	12
	1	1	
		1	
	1	1	

Section properties of the composite elements

Composite Section Finite element analysis Computer output

Table 4 Numbering of elements and nodes

Element number	Node	number
	First node (i)	Second node (j)
1	1	2
3	2 3	4
4	4	5
6	6	1
7 8	4 5	5
.9	. 6	11

Table 5 Finite element nodal global co-ordinates

Element	Node number	Global co	o-ordinates	Global element	Element
		Abscissa m	Ordinate m	angle in degrees	m
1	1 2	0 0	0 7	90	7
2	2 3	0 11	7 7 7	0	11
3	3 4	11 11 11	7 0	-90	7
4	4 5	11 7	0	0	4
5	5	7 4	0 0	0	3
6	6 1	4 0	0 0	0	4
7	4	11 7	0 0	0	4
8	5 6	7 4	0 0	0	3
9	6 1	4	0	0	4

From information in Tables 4 and 5 the program plots the geometry of the tunnel section to scale in Fig 1. This plotting is essential because it allows the user to detect any input mistake easily and quickly.

Fig 1 Immersed cross-section

From information obtained from Figures 5.1, 5.2, and 5.3 the program displays Tables 4 and 5, as shown here below

Node number					
First node (i)	Second node (j)				
1	2				
2	4				
5	6				
6 4	15				
5	6				
	Node First node (i) 1 2 3 4 5 6 4 5 6				

Table 4 Numbering of elements and nodes

Table 5 Finite element nodal global co-ordinates

Element	Node	Global co	o-ordinates	Global	Element
namber	indino er	Abscissa m	Ordinate m	angle in degrees	m
1	1 2	0 0	0 7	90	7
2	2 3	0 11	7 7 7	0	11
3	3 4	11 11 11	7 0	-90	7
4	4 5	11 7	0	0	4
5	5 6	7 4	0	0	3
6	6 1	4 0	0	0	4
7	4 5	 11 7	0	0	4
8	5 6	7 4	0	0	3
9	6 1	4 0	0	0	4

1011000000 <u>0</u> 000000000	8.00000000000000000000			0022255	23575223
Table 6	Material	properties	per	1m	strip
07226110	2012/2017/07	309 309		2.32	an a

Element number	Element second moment of area	Element modulus of elasticity	Element cross- sectional area	Poisson's ratio
	m∧4	kN/m^2	m^2	
1 2 3 4 5 6	.08333 .08333 .08333 .08333 .08333 .08333 .08333 .08333	2.E+7 2.E+7 2.E+7 2.E+7 2.E+7 2.E+7 2.E+7 2.E+7	1 1 1 1 1 1 1 1	.2 .2 .2 .2 .2 .2 .2
7 8 9	 Elastic founda Elastic founda Elastic founda	tion:foundation n tion:foundation n tion:foundation n	modulus 40000 k modulus 40000 k modulus 40000 k	N/m^2/m N/m^2/m N/m^2/m N/m^2/m

Table 7 Equivalent local nodal thermal loading per 1m strip

Element Node number number		Elemen r depth	Element Coeff. of depth thermal		Temperatures			Bending moment	
	ļ	m	expansion /C	TO Č	T2 Č	T1 Č	KN	kN-m	
1	1	1	1.E-5	15	30	10	-1000	333.3	
	2	į 1	1.E-5	15	30	10	1000	-333.3	
2	2	1	1.E-5	15	30	10	-1000	333.3	
	3	1	1.E-5	15	30	10	1000	-333.3	
3	3	1 1	- 1.E-5	15	30	10	-1000	333.3	
	4	j 1	1.E-5	15	j 30	j 10	1000	-333.3	

T0 element design construction temperature.
T2 design temperature of element surface in positive quadrant.
T1 design temperature of opposite surface.

Table 8	Fouivalent	local	noda]	forces	ner	1m	strin
10010 0	Logaroarence	1000	noud i	101 000	pres.		Det ip

Element number	Node number	Transverse distributed trapezoidal + dead weight loading ! kN/m	Axial forces of thermal dead weight loading # kN	Bending moments of trapezoidal dead+thermal loading kN-m	Transverse forces of trapezoida] + dead weight loading ! kN
1	1	300	-1095	1297	882
	2	140	905.5	-1166	658
2	2 3	167 167 167	-1000 1000	2017 -2017	918.5 918.5
3	3	140	-905.5	1166	658
	4	300	1095	-1297	882
4	4	155 155	0 0	206.7 -206.7	310 310
5	5	155	0	116.3	232.5
	6	155	0	-116.3	232.5
6	6	155	0	206.7	310
	1	155	0	-206.7	310

Trapezoidal loading does not produce axial forces.
! Thermal loading does not produce transverse forces.

Table 9	Equivalent	nodal	global	external	forces	per	1m	strip

Node	Global comp	External momen		
number	in ×'directi	on in Y'direction		
	kN	kN	kN-m	
1	882	784.5	1090.32	
2	-342	13	850.917	
3	342	13	-850.917	
4	-882	784.5	j-1090.32	
5	0	j-442.5	-90.4167	
6	0	-442.5	90.4167	

Node number		Global for	ces	Global displacements			
	X'- Component t' kN	Y'- Component f' kN	Bending moment m' kN-m	Component u' m	Y'- Component V' m	Rotation angle Theta in Radians	
1 2 3 4 5 6	882 -342 342 -882 0 0	784.5 13 13 784.5 -442.5 -442.5	1090 850.9 -850.9 -1090 -90.42 90.42	.0002252 -7.674E-5 7.674E-5 0002252 -6.141E-5 6.141E-5	.004707 .004711 .004711 .004707 -2.979E-5 -2.979E-5	0006446 .0008852 0008852 .0006446 .0007293 0007293	
SUM !	0	710					

Table 11 Global nodal forces and displacements per 1m strip

! Balanced by elastic foundation element if sum is not zero.

Table 12	Local nod	lal internal	forces	and	displacements	per	1m	strip

Number of		1	Local for	es	Loc	Local displacements			
Elem.	Node 	Axial force t kN	Transverse force f kN	Bending moment m kN-m	Axial displace- ment u M	Transverse displace- ment v m	Rotation angle Theta in Radians		
1	 1 2	1108 918.5	 -819.1 -720.9	-1440 1750	004707 004711	 .0002252 -7.674E-5	0006446 .0008852		
FOR E	LEMENT	No. 1 TH	IE SUM OF MOI	IENTS=042	5623851888				
2	2	720.9 -720.9	-918.5 -918.5	-1750 1750	-7.674E-5 7.674E-5	.004711 .004711	.0008852 0008852		
FOR E	LEMENT	No. 2 TI	IE SUM OF MOI	IENTS= 1.81	898940355E-1	12			
3	3 4	918.5 -1107	-720.9 -819.1	-1750 1440	.004711 .004707	-7.674E-5	0008852 .0006446		
FOR E	LEMENT	No. 3 TH	IE SUM OF MOI	IENTS=014	- 5041527732	•••••••••			
4	4 5	818.9 -818.9	-835.6 215.6	-1295 -811.1	.0002252 6.141E-5	004707 2.979E-5	.0006446 .0007293		
FOR E	LEMENT	No. 4 TI	IE SUM OF MOI	1ENTS=-9.97	- 424365323E-1	13			
5	5 6	818.8 818.8	-232.5 -232.5	693.8 -693.8	6.141E-5	2.979E-5 2.979E-5	.0007293 0007293		
FOR E	LEMENT	No. 5 TI	IE SUM OF MOI	1ENTS= 5.41	233724505E-1	16			
6	6 1	818.9 -818.9	215.6 -835.6	811.1 1295	-6.141E-5 0002252	2.979E-5	0007293 0006446		
FOR E	LEMENT	No. 6 TI	IE SUM OF MOI	1ENTS= 4.17	887946469E-1	13			
	1	 			-1	1			

3

From information in Table 12, the program plots the deflected shape of the tunnel finite elements in Fig 3. We should note that in the method of finite element analysis only nodal displacements are determined. If the user wishes to determine displacements elsewhere on the element, nodes should be created at the desired location.

Fig 3 Nodal global displacements magnified 40 times

The shear and moment diagrams dor selected nodes are plotted by the program here below. We should note that in the method of finite element analysis only nodal displacements are determined. If the user wishes to determine displacements elsewhere on the element, nodes should be created at the desired location..

Element length= 11 m Moment diagram Shear diagram Internal nodal forces diagrams of element No. 2

Design of composite elements

Table 13 gives the section properties. Tables 14 and 15 give the design of studs

Element No.	Concrete depth	Steel plate	thickne	sses Diameter of	
	 mm	 Compression mm	Tensi mm	on mm	
1	1000	12	12	12	
2	1000	12	12	12	
3	1000	12	12	12	
4	1000	12	12	12	
5	1000	1 12	12	12	
6	1000	j 12	12	12	
Steel plate Concrete ch Concrete mo Concrete se Steel plate Steel plate Steel plate	e modulus of elas naracteristic com odulus of elastic ecant modulus of e yield strength e/concrete modula nate tensile stre	ticity pressive stre ity elasticity r ratio ngth	= ngth = = = = =	210000 N/mm ² 30 N/mm ² 20000 N/mm ² 32000 N/mm ² 275 N/mm ² 10.5 400 N/mm ²	

Table 13 Section properties.

Table 14 Design of stud shear connectors

Element	Node 	Depth of centroid	Second moment of	Stud res	s to ist	Stu ste	uds to eel pla	pro ate	vide shear	Stu	ds to ct as
number	number 	surfaces ! 	area of the DSC	buck of p	ling late	 	conne	ctio	n 	tra she	nsverse ar rein
	Ļ	ļ	section !	in c	omp	C (omp	l t	ens	for	cement
		a a		Spa	cing	Spa	acing	Sp	acing	Sp.	acing
		į m	m^4	m	c/c	m	c/c	m	c/c	i n	c/c
1	1	.3097	.0836	.48		.19	965	.1	146	1.1	212
	2	.3097	.0836	.48		.21	094	j.1	221	j .1:	243
2	2	.3097	.0836	.48		1.18	856	j.1	082	j .1	101
	3	.3097	.0836	.48		.18	856	j.1	082	j.1	101
3	3	.3097	.0836	.48		.20	094	j.1	221	j .1:	243
	4	.3097	.0836	.48		.19	965	j.1	146	j .1:	212
4	4	.3097	.0836	.48		j .19	945	j.1	134	j .1:	217
	5	.3097	.0836	.48		.38	83	1.2	233	1 .2	478
5	15	1.3097	.0836	.48		.36	588	i .2	151	i .2	398
	6	.3097	.0836	.48		.36	588	i .2	151	1 .2	398
6	6	.3097	.0836	.48		.38	83	.2	233	1 .2	478
	1	.3097	.0836	.48		į .19	945	j.1	134	j .1:	217

Based conservatively on a fully cracked section neglecting axial forces Spacings of studs in the transverse and longitudinal directions are assumed to be equal. Maximum stud spacing is limited to 1/2 of the concrete depth

Element number	Node number 	Depth of centroid surfaces ! 	Second moment of area of the DSC	Studs to resist buckling of plate	Studs to steel pl conne 	Studs to act as transverse shear rein	
	2	2	section !	in comp	comp	tens	forcement
	l. L	l m	m^4	Spacing m c/c	Spacing m c/c	Spacing m c/c	Spacing m c/c
1	1	.3097	.0836	.48	.1965	.1146	.2734
	2	.3097	.0836	. 48	.2094	.1221	.3206
2	2	.3097	.0836	.48	.1856	.1082	.2223
	3	.3097	.0836	.48	.1856	.1082	.2223
3	3	.3097	.0836	.48	.2094	.1221	.3206
	4	.3097	.0836	.48	.1965	.1146	.2734
4	4	.3097	.0836	.48	. 1945	.1134	.267
	5	.3097	.0836	.48	.383	.2233	j.5 j
5	5	.3097	.0836	.48	.3688	.2151	1.5
	6	.3097	.0836	.48	.3688	.2151	j.5 j
6	6	.3097	.0836	.48	.383	.2233	1.5
	1	.3097	.0836	. 48	. 1945	.1134	.267

Table 15 Design of stud shear connectors (based on ACI-318 Section 1700)

! Based conservatively on a fully cracked section neglecting axial forces Spacings of studs in the transverse and longitudinal directions are assumed to be equal. Maximum stud spacing is limited to 1/2 of the concrete depth

Fig 5 check the section resistance to bending moments at selected nodes

Fig 5 El.3 Node 3 axial compression and bending moment interaction diagram/1 m length

Fig 1 sections (a) and (b) gives details of the shear connectors. Sections (c) and (d) gives suggested corner details of the composite tunnel section.

Fig 1 Stud distribution. a) electrically welded studs at one end b) friction welded studs at both ends

(a)

Design of continuous reinforced concrete frame

4.3 REINFORCED CONCRETE CONTINUOUS FRAME

The same procedure explained in section 4.2 was followed in the design of the continuous reinforced concrete frame shown in Fig 1_B. The frame geometry, loading, local and global axes are given in Fig 1_B. This structure is idealized by 31 elements and 20 nodes and is subject to its self weight, concentrated forces and bending moments at some nodes, and triangular, trapezoidal, uniformly distributed and thermal loads on some elements. The frame has 4 boundary nodes: 1, 12, 13 and 14 and 3 foundation elements 14, 21 and 20 resisted by elastic foundation elements 29, 30 and 31. Note that the elastic foundation elements share their nodes with the foundation elements 20, 21 and 14. Since this frame has 4 boundary nodes, Table 10 was included in the program output. Fig 1_B details the loads acting on this frame as follows:

Node 3 is acted upon by a concentrated horizontal force of:	+ 50 kN
Node 8 is acted upon by a concentrated vertical force of:	+ 100 kN
Node 10 is acted upon by a concentrated horizontal force of:	– 50 kN
Node 16 is acted upon by a bending moment of:	– 50 kN-m
Node 19 is acted upon by a bending moment of:	+ 50 kN-m
Element 4 is subject to horizontal uniformly distributed load of:	+ 40 kN/m
Element 15 is subject to vertical triangular load that varies from:	0 to 80 kN/m
Element 6 is subject to vertical trapezoidal load that varies from:	60 kN/m to 80 kN/m
Element 8 is subject to thermal gradient that varies from:	10° C to 100° C
Element 10 is subject to thermal gradient that varies from:	15° C to 200° C

Fig 4_B Finite element representation of a continuous re-inforced concrete frame

Element number	Node number					
	First node (i)	Second node (j)				
1	1	2				
2	2					
3	3	1 4				
5	4					
6	6	ĬŽ				
7	7	8				
8	8	9				
9	9	10				
10	10					
12 1	20	1 12				
13 i	15	1 14				
14	2	15				
15	3	16				
16	4	17				
1/	1/					
19 1	19					
20	žó					
21	15	20				
22	16	19				
23	20	19				
24	15	16				
25 1	17	1 1/				
27	18					
28	19	18				
29	20	11				
30	15	20				
.31		1 15				

Table 4 Numbering of elements and nodes

Table	5	Finite	element	noda]	global	co-ordinates

Element	Node	Global co	ordinates	Global	Element length	
namber		Abscissa m	Ordinate m	angle in degrees	m	
1	1 2	0	4 9	90	5	
2	2 3	0 0	9 14	90	5	
3	3 4	0	14 19	90	5	
4	4 5	0	19 24	90	5	
5	5 6	0 4	24 24 24	0	4	
6	6 7	4 10	24 24 24	0	6	
7	7 8	10 14	24 24 24	0	4	
8	8	14 14 14	24 19	-90	5	
9	9 10	14 14 14	19 14	 -90	5	
10	10 11	14 14 14	14 9		5	
11	11 12	14 14 14	9 4	-90	5	
12	20 13	10 10	9 0	-90	9	
13	 15 14	4 4 4	9	-90	9	
14	2 15	0 4	9 9	0	4	
15	3 16	0 4	14 14 14	0	4	

Element	Node	Global co	o-ordinates	Global	Element length		
namber		Abscissa m	Ordinate m	angle in degrees	m		
16	4 17	0 4	19 19 19	0 4		0 4	
17	17 18	4 10	19 19	0	6		
18	18 9	10 14	19 19 19	0	4		
19	19 10	10 14	14 14 14	0	4		
20	20 11	10 14	9	0	4		
21	15 20	4 10	9	0	6		
22	16 19	4 10	14 0 14 0		6		
23	20 19	10 10	9 14	90	5		
24	15 16	4 4	9 14	90	5		
25	16 17	4 4	4 4	4 4	14 19	90	5
26	17 6	4 4	19 24	90	5		
27	18 7	10 10	19 24	90	5		
28	19 18	10 10	14 19	90	5		
29	20 11	10 14	9	0	4		
30	15 20	4 10	9 9	0	6		
 31 2 0 15 4		0 4	9	0	4		

Table 5 Finite element nodal global co-ordinates (cont'd)

From information in Tables 4 and 5 the program plots the geometry of the tunnel section to scale in Fig 2. This plotting is essential because it allows the user to detect any input mistake easily and quickly.

Fig 2 Finite element representation

.2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2

Table 6 Material properties per 1m strip

Table 7 Equivalent local nodal thermal loading per 1m strip

Elemen	t Node	Elemen	t Coeff. of	Te	mperatur	es	Axial	Bending
number	Inumber	depth	thermal	8	-		force	moment
		m	expansion /Č	Т0 С	T2 Č	T1 Č	KN	kN-m
8	8	11	1.E-5	15	10	100	-8000	
	9	į 1	1.E-5	15	10	100	8000	1500
10	10	- <u> </u>		15	15	200	-18500	
	11	1	1.E-5	15	15	200	18500	3083
000000			<u></u>	000000		000000		- <u> </u>

T0 element design construction temperature.
T2 design temperature of element surface in positive quadrant.
T1 design temperature of opposite surface.

Table 8	Equivalent	local	noda]	forces	per	1m	strip
							· · · ·

Element number	Node number	Transverse distributed trapezoidal dead weight loading ! kN/m	Axial forces of thermal dead weight loading # kN	Bending moments of trapezoidal + dead+thermal loading kN=m	Transverse forces of trapezoidal dead weight loading ! kN
1	1 2	0	-67.5 -67.5	0	0
2	 2 3	0 0 0	 -67.5 -67.5	0 0	0 0
3	3 4	0	 -67.5 -67.5	0 0	0 0
4	 4 5	40 40	-67.5 -67.5	83.33 -83.33	100 100
5	5	27 27 27	0 0	36 -36 -36	54 54 54
6	6	87	0	285	279
	7	107	0	-297	303
7	7 8	27 27 27	0 0	36 -36 -36	54 54 54
8	8	0	-7933	-1500	0
	9	0	8068	1500	0
9	9	0	67.5	0	0
	10	0	67.5	0	0
10	10	0	-18430	-3083	0
	11	0	18570	3083	0
11	11	0	67.5	0	0
	12	0	67.5	0	0
12	20	0	121.5	0	0
	13	0	121.5	0	0
13	15	0	121.5	0	0
	14	0	121.5	0	0
14	2	27	0	36	54
	15	27	0	-36	54
15	3	27	0	78.67	102
	16	107	0	-100	166

Table 8 Equivalent local nodal forces per 1m strip (cont'd)									
	Table 8	Equivalent	local	nodal	forces	per	1m	strip	(cont'd)

Element number	Node number	Transverse distributed trapezoidal	Axial forces of thermal	Bending moments of trapezoidal	Transverse forces of trapezoidal
		dead weight loading ! kN/m	dead weight loading # kN	dead+thermal loading kN-m	dead weight loading ! kN
16	4 17	27 27 27	0 0	36 -36	54 54
17	17 18	27 27 27	0 0	81 -81	81 81
18	18 9	27 27 27	0 0	36 -36	54 54
19	19 10	27 27 27	0 0	36 -36	54 54
20	20 11	27 27 27	0 0	36 -36	54 54
21	15 20	27 27 27	0 0	81 -81	81 81
22	16 19	27 27 27	0 0	81 -81	81 81
23	20 19	0	-67.5 -67.5	0 0	0 0
24	15 16	0 0	-67.5 -67.5	0 0	0 0
25	16 17	0	-67.5 -67.5	0 0	0 0
26	17 6	0	-67.5 -67.5	0 0	0 0
27	18 7	0 0	-67.5 -67.5	0 0	0 0
28	19 18	0 0	-67.5 -67.5	0 0	0 0

Trapezoidal loading does not produce axial forces. ! Thermal loading does not produce transverse forces.

Node	Global compo	nents of forces	External moment
number	in X'directio	n in Y'direction	
	kN	kN	kn-m
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	0 0 50 100 100 0 0 0 0 0 0 0 0 0 0 0 0	67.5 189 237 189 121.5 400.5 424.5 -7778.5 8189 -18311 18689 67.5 121.5 121.5 121.5 324 382 270 270 270 270 324	0 36 78.6667 119.333 -47.3333 249 -261 -1535.94 1463.94 -3119.21 3047.21 0 0 0 45 -69 45 -45 30 -45

Table 9 Equivalent nodal global external forces per 1m strip

Table 10 Boundary conditions.

	Global noda		
Node number	in X' direction	in Y' direction	Rotation
1	Fixed	Fixed	Free
12	Fixed	Fixed	Free
13	Fixed	Fixed	Fixed
14	Fixed	Fixed	Fixed

Node	Global forces			Global displacements		
namber	X'- Component t' kN	Y'- Component f' kN	Bending moment m' kN-m	Component u' m	Component v' m	Rotation angle Theta in Radians
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 SUM !	-101.4 0 50 100 0 0 0 -50 0 116.1 -102.8 -89.51 0 0 0 0 22.44	-942.5 189 237 189 121.5 400.5 424.5 -7778 8189 -18310 18690 -2198 169.6 -897.5 324 382 270 270 270 324 	0 36 78.67 119.3 -47.33 249 -261 -1536 1464 -3119 3047 0 -460.1 -419.5 45 -69 45 -69 45 -45 30 -45	0 .003732 .003937 .002688 .0008986 .0008534 .00067259 .0006724 .002675 .004013 .003863 0 0 0 .003759 .00394 .002674 .002674 .002683 .003982 .003821	0 .0002356 .0004834 .0006465 .0007115 .0008326 0001062 005346 003428 003727 .0005494 0 0 .0004039 .0006106 .000743 0001615 -8.85E-5 -7.632E-5	.0009874 .0002203 -5.256E-5 0001715 0001935 -7.562E-6 00068 001737 .0001912 001577 .001362 .000502 0 0 8.017E-5 -7.592E-5 0001641 0005431 0005431 0002249 -1.301E-5

Table 11 Global nodal forces and displacements per 1m strip

! Balanced by elastic foundation element if sum is not zero.

Numb	er of		Local for	ies	Loc	al displace	ements
Elem.	Node	Axial force t kN	Transverse force f kN	Bending moment m kN-m	Axial displace- ment u m	Transverse displace- ment v m	Rotation angle Theta in Radians
1	1 2	1010 -875	-101.5 101.5	.0338 -510.8	0	0,003732	.0009874
FOR E	LEMENT	NO. 1 THE	E SUM OF MON	1ENTS= 2.318	 14567542E-1	3	
2	2 3	1059 -923.6	30.77 -30.77	167.7 -14.03	0002356 0004834	.003732 .003937	.0002203 -5.256E-5
FOR E	LEMENT	NO. 2 THE	SUM OF MON	1ENTS=5037	5951935	F	
3	3 4	719.9 -584.9	98.59 -98.59	286.5 207.2	0004834 0006465	.003937 .002688	-5.256E-5 0001715
FOR E	LEMENT	No. 3 THE	SUM OF MON	1ENTS=5314	57819689		
4	4 5	327.5 -192.5	25.75 -225.7	238.5 390.6	0006465 0007115	.002688 .0008986	0001715 0001935
FOR E	LEMENT	NO. 4 THE	E SUM OF MON	MENTS=3629	03679551		
5	5	225.7 -225.7	-192.5 84.54	-390.6 -163.6	.0008986 .0008534	.0007115 .0008326	0001935 -7.562E-6
FOR E	LEMENT	NO. 5 THE	E SUM OF MON	1ENTS=-1.038	05852802E-1	4	8
6	6 7	425.2 -425.2	-375.4 -206.6	-387.4 -178.7	.0008534 .0007259	.0008326 0001062	-7.562E-6 00068
FOR E	LEMENT	NO. 6 THE	SUM OF MON	1ENTS= 3.380	62910998E-1	4	»
7	7 8	267.2 -267.2	 53 -161	619.1 -189.6	.0007259	0001062 005346	00068 001737
FOR E	LEMENT	NO. 7 THE	SUM OF MON	1ENTS=-5.218	04821574E-1	3	
8	8	261 -396	-267.3 267.3	189.8 -1525	005346 003428	0006724 002675	001737 .0001912
FOR E	LEMENT	NO. 8 THE	SUM OF MON	1ENTS=0907	784604722		
9	9 10	1129 -1264	-305.3 305.3	-174 -1351	003428 003727	002675 004013	.0001912 001577
FOR E	LEMENT	No. 9 THE	E SUM OF MON	MENTS=3611	64379633		en nel nel nel nel nel nel nel nel nel n

. Table 12 Local nodal internal forces and displacements per 1m strip

Numb	per of	2	Local for	ces	Loc	al displace	ements
Elem.	Node	Axial force t kN	Transverse force f kN	Bending moment m kN-m	Axial displace- ment u m	Transverse displace- ment v m	Rotation angle Theta in Radians
10	10 11	1327 -1462	 -98.24 98.24	 1860 -2351	003727 .0005494	004013 003863	001577 .001362
FOR E	LEMENT	NO. 10 T	HE SUM OF MO	DMENTS=541	756641171		
11	11 12	2130 -2265	116.1 -116.1	572 .0003297	.0005494 0	003863 0	.001362 .000502
FOR E	ELEMENT	NO. 11 T	HE SUM OF MO	DMENTS=521	556556845		· · · · · · · · · · · · · · · · · · ·
12	20 13	-291.1 48.09	-102.8 102.8	-464.9 -460.1	-7.632E-5	003821 0	-1.301E-5
FOR E	ELEMENT	No. 12 T	HE SUM OF MO	DMENTS=928	544682554		
13	15 14	776 -1019	-89.51 89.51	-389.9 -419.5	.0004039 0	003759 0	8.017E-5 0
FOR E	LEMENT	NO. 13 T	HE SUM OF MO	DMENTS=913	348072467	Parameter and the second s	
14	2	-135.4 135.4	60.61 -168.6	251.6 206.8	.003732 .003759	.0002356	.0002203 8.017E-5
FOR E	LEMENT	NO. 14 T	HE SUM OF MO	DMENTS= 9.44	383460322E-	15	
15	3 16	-17.78 17.78	-203.7 -64.26	-272.4 -113.2	.003937 .00394	.0004834 .0006106	-5.256E-5 -7.592E-5
FOR E	ELEMENT	No. 15 T	HE SUM OF MO	DMENTS=-4.04	242611607E-	14	
16	4 17	72.89 -72.89	-257.3 149.3	-445.7 -367.6	.002688 .002674	.0006465	0001715 0001641
FOR E	LEMENT	No. 16 T	HE SUM OF MO	DMENTS= 1.09	690034833E-	13	
17	17 18	-30.98 30.98	-185.3 23.34	-288.8 -337.3	.002674 .002683	.000743 0001615	0001641 0005431
FOR E	LEMENT	NO. 17 T	HE SUM OF MO	DMENTS=-7.28	375693093E-	14	
18	18	37.99 -37.99	624.6 -732.6	1015 1699	.002683 .002675	0001615 003428	0005431 .0001912
FOR E	LEMENT	NO. 18 T	HE SUM OF MO	DMENTS=-1.69	031455499E-	13	r
19	19 10	-157 157	-44.55 -63.45	545.9 -508.7	.003982 .004013	-8.85E-5 003727	0002249 001577
FOR E	LEMENT	No. 19 T	HE SUM OF MO	DMENTS= 1.09	801057135E-	13	

Table 12 Local nodal internal forces and displacements per 1m strip (cont'd 1)

Num	ber of		Local for	ies	Loc	al displace	ements
Elem	. Node	Axial force t kN	Transverse force f kN	Bending moment m kN-m	Axial displace- ment u m	Transverse displace- ment v m	Rotation angle Theta in Radians
20	20 11	-211.1 211.1	495 -603	488.9 1707	.003821 .003863	-7.632E-5 .0005494	-1.301E-5 .001362
FOR	ELEMENT	NO. 20 T	THE SUM OF MO	MENTS= 2.70	5112466224E-	13	
21	15 20	-208.5 208.5	-22.54 -139.5	120.2 230.4	.003759 .003821	.0004039 -7.632E-5	8.017E-5 -1.301E-5
FOR	ELEMENT	No. 21 7	THE SUM OF MO	MENTS=-9.53	7289802983E-	14	
22	16 19	-137.7 137.7	-98.42 -63.58	-91.9 -12.69	.00394 .003982	.0006106 -8.85E-5	-7.592E-5 0002249
FOR	ELEMENT	No. 22 T	THE SUM OF MO	MENTS= 4.64	1767113684E-	14	
23	20 19	18.77 116.2	-108.4 108.4	-200.2 -341.5	7.632E-5 8.85E-5	.003821 .003982	-1.301E-5 0002249
FOR	ELEMENT	No. 23 1	THE SUM OF MO	MENTS=51	5858156974	T	
24	15 16	894.6 -759.6	-24.5 24.5	-9.35 -113.3	0004039 0006106	.003759 .00394	8.017E-5 -7.592E-5
FOR	ELEMENT	No. 24 T	THE SUM OF MO	MENTS=50	415595815		8
25	16 17	596.9 -461.9	95.5 -95.5	268.4 209.7	0006106 000743	.00394 .002674	-7.592E-5 0001641
FOR	ELEMENT	NO. 25 T	THE SUM OF MO	MENTS=531	1937907383	P	N
26	17 6	425.9 -290.9	199.4 -199.4	446.7 551	000743 0008326	.002674 .0008534	0001641 -7.562E-6
FOR	ELEMENT	No. 26 T	THE SUM OF MO	MENTS=36	0935523257	1	
27	18 7	288.6 -153.6	-158 158	-349.1 -440.4	.0001615 .0001062	.002683 .0007259	0005431 00068
FOR	ELEMENT	No. 27 1	THE SUM OF MO	MENTS=36	2190185855		
28	19 18	-224.4 359.4	-89.04 89.04	-116.7 -328.9	8.85E-5 .0001615	.003982 .002683	0002249 0005431
FOR	ELEMENT	No. 28 1	THE SUM OF MO	DMENTS=53	7516762702		S <u>ere e e e e e e e e</u> e e e

Table 12 Local nodal internal forces and displacements per 1m strip (cont'd 2)

Fig 3 Nodal global displacements magnified 40 times

Element No.	Effective	Steel reinfo	Diameter of	
	mm	Compression mm^2/mm	Tension mm^2/mm	mm
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 	1000 1000	12 12 12 12 12 12 12 12 12 12	12 12	12 12 12 12 12 12 12 12 12 12
Steel reinf Concrete ch Concrete mo Concrete se Steel reinf Steel reinf Stirrups yi	orcement modulus aracteristic com dulus of elastic cant modulus of orcement yield s orcement/concret eld strength	of elasticity pressive strei ity elasticity trength e modular rat	y = 210000 ngth = 30 N, = 20000 = 32000 = 275 N io = 10.5 = 200 N	0 N/mm ² /mm ² N/mm ² N/mm ² N/mm ²

Table 13 Section properties. Design of stirrups come next

Element number	Node number	Stirrups are designed to act as transverse shear reinforcement, spacing m c/c
1		.5
2	Ž	.5
3	3	.5
4	4	.5
5	5	.5
6	6	.5
7		.5
8	8	.5
9	9	.5
10		.5
11		.5
12	20	.5
13	15	.5
14	2	.5
15		.5
16	4	.5
17	17	.5
18	18	.4519
19	19	.208
20	20	.5
21		.5
22	20	.5

Table 14 Design of stirrups for RC elements

. . .

Table 14 Design of stirrups for RC elements (cont'd)

Element number	Node number	Stirrups are designed to act as transverse shear reinforcement, Spacing m c/c
23	19	.5
24	15	.5
	16	.5
25	1 16	1.5
	1 17	.5
26	1 17	.5
100.000	6	.5
27	118	1.5
	7	1 .5 1
28	1 19	1.5
	18	.5

This design is based on ACI-318 Section 1700 Maximum spacing is limited to 1/2 of the concrete depth

- 72

Fig 4 Re-inforced concrete element subjected to axial force and bending a) cross-section b) strain diagram c) stress block diagram

Fig 5 El.1 Node 2 axial compression and bending moment interaction diagram/1 m length

REFERENCES

- 1. Richards, T. H., Energy Methods in Stress Analysis, Ellis Horwood Ltd., New York, USA, 1922
- 2. Roark, Raymond J. 'Roark's Formulas for Stress and Strain'. McGraw-Hill Book Co. New York, USA, 1989
- 3. Chages, A., Principles of Structural Stability Theory, Prentice Hall, New Jersey, USA, 1974
- 4. Robert, T.M., Static and fatigue resistant design of welded stud connectors in double skin composite construction draft report. School of Engineering, University of Wales College of Cardiff, 1994.
- 5. American Concrete Institute, Recommended Practice for Design of Concrete Pavements, (ACI 325 – 58)
- 6. Helou, Anis J, Ph.D. Thesis, School of Engineering, University of Wales, College of Cardiff, 1993
- ACI 318 64 : Part IV-B. "Structural analysis and proportioning of members Ultimate strength design". American Concrete Institute, Michigan 48219, USA, 1965
- 8. Eurocode No. 4: Design of composite steel and concrete structures: Part 1.1 : General rules and rules for buildings, 1992
- 9. Reynold, Charles E. and Steedman, James C., "Reinforced concrete design handbook", Cement and Concrete Association, Wexham Springs, UK, 1981
- 10. BS8110 : Structural use of concrete : Part 1. Code of practice for design and construction, 1985
- 11. BS5400 : Steel concrete and composite bridges : Part 10 : Code of practice for fatigue: 1980.